About 62,100,000 results
Open links in new tab
  1. 如何通俗易懂地讲解什么是 PCA(主成分分析)? - 知乎

    如何通俗易懂地讲解什么是 PCA(主成分分析)? 博主没学过数理统计,最近看 paper 经常遇到,但是网上的讲解太专业看不懂,谁能通俗易懂的讲解一下,主成分分析作用是什么?

  2. PCA图怎么看? - 知乎

    PCA结果图主要由5个部分组成 ①第一主成分坐标轴及主成分贡献率主成分贡献率,即每个主成分的方差在这一组变量中的总方差中所占的比例 ②纵坐标为第二主成分坐标及主成分贡献率 ③ …

  3. 主成分分析(PCA)的原理谁懂的?可以讲解下? - 知乎

    PCA 从三维缩减到二维后的散点图 PCA 在处理具有大量特征的数据集时非常有用。图像处理、基因组研究等常见应用总是需要处理数千甚至数万列数据。虽然拥有更多的数据总是好事,但有 …

  4. 独立成分分析 ( ICA ) 与主成分分析 ( PCA ) 的区别在哪里? - 知乎

    一、概述 主成分分析(Principal Component Analysis,PCA)是一种用于数据降维的方法,其核心目标是在尽可能保留原始数据信息的前提下,将高维数据映射到低维空间。该算法基于方差 …

  5. PCA得分图横纵坐标的正负和数值大小代表什么? - 知乎

    在PCA得分图中,横坐标(通常是PC1)和纵坐标(通常是PC2)代表的是两个主要的主成分。 这些主成分为了解释数据的最大方差而被提取出来。 具体来说: 正负值并不直接提供关于样本 …

  6. R统计绘图-PCA分析绘图及结果解读 (误差线,多边形,双Y轴图、 …

    Apr 27, 2022 · 根据PCA分析的目的,有时专家审稿会要求对原始变量进行Bartlett's test of sphericity (球形检验)和Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO采样充分性 …

  7. 独立成分分析 ( ICA ) 与主成分分析 ( PCA ) 的区别在哪里? - 知乎

    但在ICA之前,往往会对数据有一个预处理过程,那就是PCA与白化。 白化在这里先不提,PCA本质上来说就是一个降维过程,大大降低ICA的计算量。 PCA,白化后的结果如下图所示。 可 …

  8. 如何进行PCA分析? - 知乎

    PCA告诉我们的是,我们预先确定的x轴和y轴对于描述我们选择的数据并不是那么有意义。 因为所选数据的分布角度大约是45度,所以选择u1和u2作为坐标轴比选择x和y更有意义。

  9. 什么时候使用PCA和LDA? - 知乎

    PCA与LDA的区别: (1)PCA是无监督模型,利用正交变换来对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值; (2)LDA是有监督模型,假设了 各 …

  10. PCA:从入门到入门 - 知乎

    PCA,Principle Component Analysis,就是一种较为简单和普遍的降维方法—— 2 PCA 一句话定义:通过线性线性变换,将数据映射到低维的子空间中的降维方法,期间尽可能防止信息丢失 …